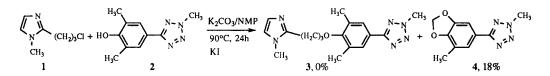


PII: S0040-4039(97)00623-0

## A Novel Base-Promoted Oxidative Rearrangement Of 2-Methyl-4-Substituted Phenols To 1,2-(Methylenedioxy)-4-Substituted Benzenes


Gee-Hong Kuo\*1 and Michael A. Eissenstat

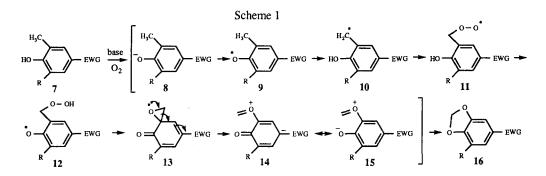
Department of Medicinal Chemistry, Sanofi Pharmaceuticals, Inc. 9 Great Valley Parkway, Malvern, PA 19355

Abstract: Several 2-methyl-4-substituted phenols 5 were oxidatively rearranged to 1,2-(methylenedioxy)-4-substituted benzenes 6 in the presence of base and air. A mechanism was proposed. © 1997 Elsevier Science Ltd.

The oxygenation of phenolates generally leads to a complex reaction mixture. The oxidizability of phenolates depends on the nature of the substituents on the aromatic ring. Electron-donating substituents accelerate the reaction whereas electron-withdrawing substituents retard it.<sup>2</sup> We now report a novel base-promoted oxidative rearrangement reaction of 2-methyl-4-substituted phenols to 1,2-methylenedioxy-4-substituted benzenes while the 4-substituent is a electron-withdrawing group.<sup>3</sup>

As part of the antiviral program,<sup>4</sup> we were interested in the preparation of the tetrazol 3. Surprisingly, an attempt to alkylate the phenol 2<sup>4</sup> with the chloride 1, we did not obtain the product 3 but isolated an unknown




compound in 18% yield (mp. 126-128°C). Combustion analysis data coupled with <sup>1</sup>H & <sup>13</sup>C NMR and mass spectrum established its structure as 4.<sup>5</sup> In an effort to explore this unprecedented reaction, it was found that both base and molecular oxygen were necessary. In the absence of  $K_2CO_3$ , treatment of the phenol 2 with either air or NaIO<sub>4</sub> did not lead to any of the product 4. After many trials of the reaction conditions,<sup>6</sup> we were pleased to find out that Cs<sub>2</sub>CO<sub>3</sub> gave the best yield of 4 (80%).<sup>7</sup> We then examined the scope of the 4-substitution groups. The results were summarized in Table 1. 4-Methyl phenyl substitution also gave the rearrangement product<sup>5</sup> although

| Table 1. | н <sub>3</sub> с<br>но —<br>¹R <sup>4</sup> | $R^2$ base / N        | MP, air<br>°C, 96 h                         | $\int_{R}^{0} \frac{1}{R^{2}} \frac{1}{6} R^{2}$ |
|----------|---------------------------------------------|-----------------------|---------------------------------------------|--------------------------------------------------|
| Entry    | R <sup>1</sup>                              | R <sup>2</sup>        | Base                                        | Yield <sup>a</sup>                               |
| 1        | СН₃                                         | N <sup>N−N−CH</sup> , | Cs <sub>2</sub> CO <sub>3</sub>             | 80                                               |
| 2        | н                                           | 4-methyl phenyl       | Cs <sub>2</sub> CO <sub>3</sub>             | 22                                               |
| 3        | CH3                                         | 2-pyridyl             | Cs <sub>2</sub> CO <sub>3</sub>             | 48                                               |
| 4        | CH3                                         | CN                    | K <sub>2</sub> CO <sub>3</sub> <sup>b</sup> | 25                                               |
| 5        | CH3                                         | NO <sub>2</sub>       | Cs <sub>2</sub> CO <sub>3</sub>             | 0                                                |
| 6        | н                                           | tert-Butyl            | Cs <sub>2</sub> CO <sub>3</sub>             | 0                                                |

a: All reactions were run in 0.5 mmol scale. b: Cs<sub>2</sub>CO<sub>3</sub> hydrolyzed CN to CONH<sub>2</sub> more severely than K<sub>2</sub>CO<sub>3</sub>

in lower yield (22%, entry 2). Replacement with a better electron-withdrawing group improved the yield (48%, entry 3). Direct substitution with the base labile electron-withdrawing groups resulted in either low yield (25%, entry 4) or no product (entry 5). Electron-donating group also failed to produce any rearrangement product (entry 6).

To rationalize the formation of **6**, we tentatively proposed a mechanism<sup>8</sup> as illustrated in Scheme 1. The anion **8** was converted into the radical **9** by its oxidation with oxygen.<sup>9</sup> The radical **9** abstracted a hydrogen atom to give the benzylic radical **10**<sup>10</sup> which captured oxygen to give the hydroperoxide **12**.<sup>9.11</sup> Homolytic decomposition of **12** might lead to the epoxy ketone **13**.<sup>12</sup> The preferred ionization of the carbon-carbon bond<sup>13</sup> of the epoxide **13** might be due to the energy gained from the stabilization of the negative charge by the electron-withdrawing group in **14** and, this might explain why the better electron-withdrawing group gave higher yield (entry 3 vs. entry 2) whereas the electron-donating substitution gave no product (entry 6).



## **References and Notes**

- 1. Current address correspondence to this author at: The R.W. Johnson, PRI, Drug Discovery Department, 1000 Route 202, P. O. Box 300, Raritan, NJ 08869.
- (a) Penketh, G.E. J. Appl. Chem. 1957,7, 512. (b) Musso, H. Angew. Chem., Int. Ed. Engl. 1963, 2, 723. (c) Nishinaga, A; Itahara, T; Shimizu, T and Matsuura, T. J. Am. Chem. Soc. 1978, 100, 1820.
- 3. The preliminary result was presented at the 34th National Organic Symposium, June 11-15, 1995, Williamsburg, Virginia.
- 4. Diana, G.D.; Cutcliffe, D.; Volkots, D.L.; Mallamo, J.; Bailey, T.R.; Vescio, N.; Oglesby, R.C.; Nitz, T.J. and Wetzel, J. J. Med. Chem. 1993, 36, 3240.
- 5. All new compounds gave satisfactory spectral data, elemental analysis and/or high resolution mass spectra.
- Various temperatures (60°C, 90°C, 110°C-120°C, 140°C) and different bases (K<sub>2</sub>CO<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub>, NaOH, KOH) were tried. 4 was obtained in 42% yield if KOH was used. Replacing NMP with DMF also gave the product although in lower yield (15% lower).
- 7. In a larger scale preparation (40 mmol), 4 was obtained in < 5%. However, if oxygen was bubbled through the reaction mixture, 4 was obtained in 47% in less than 10 hours.
- 8. We thank Professor Paul Helquist, Professor Tom Hoye and Dr. Lawrence Kruse for the discussions of the mechanism.
- 9. (a) Barton, D.H.R. and Jones, D.W. J. Chem. Soc. 1965, 3563. (b) Russell, G.A. and Bernis, A.G. J. Am. Chem. Soc. 1966, 88, 5491.
- (a) West, F.G. and Naidu, B.N. J. Am. Chem. Soc. 1993, 115, 1177. (b) see [ref.8] of Andrus, M.B.; Argade, A.B.; Chen, X. and Pamment, M.G. Tetrahedron Lett. 1995, 36, 2945.
- 11. Voronenkov, V.V.; Vinogradov, A.N. and Belyaev, V.A. Russ. Chem. Rev. 1970, 39, 944.
- 12. For an example of heterolytic cleavage of peroxide leading to epoxy ketone, see Pisova, M. Collect. Czech. Chem. Comm. 1982, 47, 3318.
- 13. Becker, H.-D. and Bremholt, T. Tetrahedron Lett. 1973, 197.

(Received in USA 16 January 1997; accepted 24 March 1997)